

Segundo Examen Departamental Transformaciones Químicas. Trimestre 14-0

Nombre:	Matrícula:
 Instrucciones: No está permitido el uso del teléfono celular ni de reproduc Sólo podrán abandonar el salón una vez que hayan entrega Si en alguna de las preguntas en la que se te pida justificar 	do el examen.
1. El cambio de entalpía estándar (ΔH°) para la descomposic	ción del nitrato de plata es: $\Delta H^{\circ} = 78.67 \text{ kJ}$.
$AgNO_3(s) \longrightarrow Ag$	$gNO_2(s) + \frac{1}{2}O_2(g)$
La entalpía estándar de formación del AgNO ₃ es: -123	.02 kJ/mol. Calcula la entalpía la entalpía estándar de
formación de AgNO ₂ (s).	(2.0 puntos)
2. Calcula la ΔH° de la reacción siguiente: $H(g) + Br(g)$	→ HBr(g), a partir de los datos siguientes:
$H_2(g) \longrightarrow 2 H(g);$	$\Delta H^{\circ} = 436.4 \text{ kJ}$
$Br_2(g) \longrightarrow 2 Br(g);$	$\Delta H^{\circ} = 192.5 \text{ kJ}$
$H_2(g) + Br_2(g) \longrightarrow 2H$	Br (g); $\Delta H^{\circ} = -72.4 \text{ kJ}$
	(2.0 puntos)
3. La siguiente reacción está en equilibrio a 700 °C	
$2 H_2(g) + S_2(g)$	$\Rightarrow 2 H_2 S(g)$
La mezcla de reacción ocupa un volumen de 12.0 L y contie	ene 2.50 moles de H_2 , 1.35×10^{-5} moles de S_2 y 8.70 moles
de H_2S en el equilibrio. Calcula la constante de equilibrio $K_{\rm c}$	(2.0 puntos)
4. La presión de equilibrio de la siguiente reacción es 0.105 a	atm a 350 °C.
$MgCO_3(s) \iff M_s$	$gO(s) + CO_2(g)$
Calcula las constantes K_p y K_c .	(2.0 puntos)
5. El valor de la constante de acidez, K_a , del ácido benzoio	co es 6.5×10 ⁻⁵ . Calcula el pH de una disolución de ácido

 $C_6H_5COOH(ac) + H_2O(l) \Rightarrow H_3O^+(ac) + C_6H_5COO^-(ac)$

(**2.0** puntos)

benzoico 0.2 M.