

IZTAPALAPA

PROGRAMA DE ESTUDIOS

C.B.I.

TRIMESTRE

III 6 IV

CLAVE	UNIDAD DE ENSEÑANZA APRENDIZAJE			CREDITOS
214659	Resonancia Magnética	OBL.()	OPT. (X)	9

DIVISION

HORAS		HORAS	SERIACION
TEORIA 4.	5	PRACTICA	Autorización

OBJETIVO(S)

UNIDAD

POSGRADO EN QUÍMICA

Que el alumno entienda los fundamentos de la resonancia magnética. Aprenda a interpretar espectros de resonancia magnética nuclear y electrónica. Aplique las técnicas de resonancia magnética nuclear y electrónica en la solución de problemas de interés en las áreas de química orgánica, inorgánica, analítica, biológica y fisicoquímica.

CONTENIDO SINTETICO.

El fenómeno de resonancia. Hamiltonianos de espín.

El efecto Zeeman electrónico y nuclear.

Relajación de espín. Efectos dinámicos.

RMN de líquidos y sólidos.

Estructura fina, hiperfina y superhiperfina.

Radicales orgánicos en sólidos. Defectos puntuales.

La teoría del tensor g.

Iones metálicos de transición. Interacciones magnéticas.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE

Exposición oral del profesor con auxilio de medios audiovisuales idóneos complementada, si el profesor lo considera necesario, con la presentación de seminarios por parte de los alumnos.

UNIVERSIDAD AUTONOMA METROPOLITANA

MODALIDADES DE EVALUACION

Evaluaciones periódicas (mínimo dos). Quedará a juicio del profesor la aplicación de las siguientes modalidades adicionales: Evaluación global final, presentación de seminarios por parte de los alumnos y entrega de reportes o tareas. En su caso, el profesor ponderará a su criterio la contribución de cada una de las modalidades elegidas a la calificación final.

BIBLIOGRAFIA.

- D. Canet, Nuclear Magnetic Resonace: Concepts and Methods, Wiley, New York, 1996.
- J. A. Weil, J. R. Bolton, J. E. Wertz, Electron Paramagnetic Resonance, Wiley-Interscience, New York, 1994.
- J. W. Hennel, J. Klinowski, Fundamentals of Nuclear Magnetic Resonance, Wiley, New York, 1993.
- F. E. Mabbs, D. Collison, Electron Paramagnetic Resonance of Transition Metal Compounds, Elsevier, Amsterdam, 1992.
- R. S. Drago, Physical Methods for Chemists, 2nd edn., Saunders, New York, 1992.

SELLO		