

## Segundo Examen Departamental de Transformaciones Químicas Trimestre 03-I.

| <b>1</b> Indica si cada una de las aseveraciones siguientes es verdadera (V) o falsa (F):                 |      |     |
|-----------------------------------------------------------------------------------------------------------|------|-----|
| a) La ecuación $\Delta E = q + w$ es una forma de expresar la 1 <sup>a</sup> ley de la termodinámica:     | ( )  |     |
| <b>b)</b> Temperatura, energía interna, calor y entalpía son todas funciones de estado:                   | ( )  |     |
| c) Para toda sustancia pura $\Delta S_{\text{vap}} > 0$ :                                                 | ( )  |     |
| <b>d)</b> La entalpía se puede definir como: $H = E - PV$ :                                               | ( )  |     |
| <b>e)</b> Para una sustancia pura, en general se espera que $S_{qas} > S_{líquido} > S_{solido}$ : (      | ( )  |     |
| f) Según la 3ª ley de la termodinámica, la entropía de un sólido cristalino es cero a 0 °C:               | ( )  |     |
| <b>h)</b> La energía libre de Gibbs se puede definir como G = H - TS:                                     | ( )  |     |
| <b>g)</b> Para una reacción química a T y P constantes, $\Delta G > 0$ es un criterio de espontaneidad: ( | ( )  |     |
| j) Calor y trabajo son funciones de trayectoria:                                                          | ( )  |     |
| i) La reacción de formación de $CO_{2(g)}$ es: $C_{(grafito)} + 2O_{(g)} \rightarrow CO_{2(g)}$ :         | ( )  |     |
| (1.2)                                                                                                     | ount | tos |

- 2.- El pentafluoruro de yodo gaseoso (IF<sub>5(g)</sub>) se puede preparar por la reacción entre el yodo sólido y el fluor gaseoso según la siguiente reacción: I<sub>2(s)</sub> + 5 F<sub>2(g)</sub> → 2 IF<sub>5(g)</sub>. En un matraz de 5 L y a 125°C se introducen 10 g de I<sub>2</sub> y 10 g de F<sub>2</sub>. Después de llevarse a cabo la reacción en el matraz calcula:
  - a) la fracción molar del IF<sub>5</sub>.
  - **b)** la presión total.
  - c) la presión parcial del IF<sub>5</sub>.

(2.4 puntos)

- **3.-** En la actividad metabólica del cuerpo humano se liberan aproximadamente  $1x10^4$  kJ de calor por dia.
  - a) ¿Cuántos gramos de agua debe eliminar el cuerpo en forma de transpiración para mantener la temperatura corporal normal (37°C)?
  - **b)** Si el calor liberado por el metabolismo (1x10<sup>4</sup> kJ) se utilizara solo para aumentar la temperatura corporal, ¿qué temperatura alcanzaría el cuerpo humano (suponga que el cuerpo tiene 50 kg de agua)? Para el agua:  $\Delta H_{vap} = 2.41 \text{ kJ/g}$  Ce = 1 cal/g K.

(2.0 puntos)

**4.- a)** Calcula la entalpía estándar de formación del disulfuro de carbono (CS<sub>2</sub>) a partir de sus elementos, tomando en cuenta que:

$$C_{(grafito)}$$
 +  $O_{2(g)}$   $\rightarrow$   $CO_{2(g)}$   $\Delta H^o = -393.5 \text{ kJ}$   
 $S_{(rómbico)}$  +  $O_{2(g)}$   $\rightarrow$   $SO_{2(g)}$   $\Delta H^o = -296.1 \text{ kJ}$   
 $CS_{2(l)}$  + 3  $O_{2(g)}$   $\rightarrow$   $CO_{2(g)}$  + 2  $SO_{2(g)}$   $\Delta H^o = -1072.0 \text{ kJ}$ 

**b)** Cuando se produce una tonelada de CS<sub>2</sub> a partir de sus elementos, cuánto calor se libera o absorbe?

(2.0 puntos)

**5.-** La hidrazina (N<sub>2</sub>H<sub>4</sub>) es un compuesto altamente tóxico que se emplea como combustible en las naves espaciales. Su reacción con el oxígeno es:

$$N_2H_{4(1)} + O_{2(g)} \rightarrow N_{2(g)} + 2 H_2O_{(g)}$$
  $\Delta H^0 = -534 \text{ kJ}$ 

A partir de los siguientes datos a 25°C:

| Compuesto     | S° (J/mol K) | $\Delta H_{f}^{\circ}$ (kJ/mol) |
|---------------|--------------|---------------------------------|
| $N_2H_{4(1)}$ | 121.2        |                                 |
| $O_{2(q)}$    | 205.0        |                                 |
| $N_{2(q)}$    | 191.5        |                                 |
| $H_2O_{(g)}$  | 188.7        | - 241.8                         |

Calcula

- a) la entalpía estándar de formación de la hidrazina.
- **b)** el valor energético en kJ/g de la hidrazina.
- c) el  $\Delta G^{\circ}$  de la reacción.

(2.4 puntos)

**DATOS:** Masas Molares: N: 14.00 g/mol H: 1.08 g/mol I: 126.90 g/mol C: 12.01 g/mol S: 32.06 g/mol F: 19.00 g/mol