

Segundo Examen Departamental de Transformaciones Químicas Trimestre 05-I

- 1. Un cierto hidrato tiene la fórmula MgSO₄.XH₂O. Se calienta en un horno una cantidad de 54.2 g del compuesto con el fin de secarlo.
 - a) Si el vapor de agua generado ejerce una presión de 24.80 atm en un recipiente de 2.00 L a 120°C, calcula los moles de agua que se desprendieron del compuesto.
 - b) ¿Cuántos moles de MgSO₄ anhidro quedan?.
 - c) Calcula el valor de X en la fórmula del hidrato.

(2.0 puntos)

2. La nitroglicerina (C₃H₅(NO₃)₃) es un compuesto explosivo que se descompone de acuerdo a la siguiente reacción:

$$4 C_3 H_5(NO_3)_3 (s) \rightarrow 12 CO_2 (g) + 10 H_2O (g) + 6N_{2(g)} + O_{2(g)}$$

- a) Calcula el volumen total de los gases recolectados a 1.2 atm y 25° C a partir de 2.6×10^{2} g de nitroglicerina.
- b) ¿Cuales son las presiones parciales de los gases en estas condiciones?

(2.0 puntos)

3. A partir de las entalpías de reacción abajo indicadas:

$$H_2(g) + F_2(g) \rightarrow 2HF(g)$$
 $\Delta H^{\circ}_R = -537 \text{ kJ}$
 $C(s) + 2F_2(g) \rightarrow CF_4(g)$ $\Delta H^{\circ}_R = -680 \text{ kJ}$
 $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$ $\Delta H^{\circ}_R = 52.3 \text{ kJ}$

Calcula el ΔH°_{R} para la siguiente reacción:

$$C_2H_{4(g)} + 6 F_{2(g)} \rightarrow 4 HF_{(g)} + 2 CF_{4(g)}$$

(2.0 puntos)

4. La fotosíntesis se puede representar por la reacción:

$$6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(l) \rightarrow \text{C}_6\text{H}_{12}\text{O}_6(s) + 6 \text{ O}_2(g)$$

Compuesto	$CO_{2}\left(g\right)$	$H_2O(1)$	$C_6H_{12}O_6(s)$
ΔH°_{f} (kJ/mol)	-393.5	-285.0	-1274.5

 $C_6H_{12}O_6$ (s) es glucosa. La radiación solar produce unos 7.00 x 10^{14} kg de glucosa al año en la tierra. ¿Cual es la energía solar mínima que se requiere para producir esta masa de glucosa?

(2.0 puntos)

5. El metanol (CH₃OH), se puede fabricar por la reacción del CO con el H₂ según la reacción:

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$$

Compuesto	CO (g)	$H_{2}\left(g\right)$	CH ₃ OH (g)
$\Delta H_{f}^{\circ}(kJ/mol)$	-110.5		-201.2
S° (J/mol K)	197.9	131.0	237.6

- a) Calcula ΔH° y ΔS° para esta reacción.
- b) Calcula ΔG° a 298 K. En condiciones estándar, ¿es la reacción espontánea a esta temperatura?
- c) Calcula ΔG° a 500K suponiendo que ΔH° y ΔS° no cambian con la temperatura. ¿Es la reacción espontánea en condiciones estándar a 500 K?.

(2.0 puntos)