TERCER EXAMEN DE TRANSFORMACIONES QUÍMICAS TRIMESTRE 2007-I

1.- Para la reacción de descarboxilación del carbonato de calcio:

$$CaCO_3(s) \hat{U} \quad CaO(s) + CO_2(g)$$

- a) Calcule DH°, DS° y DG° a 25 °C para la reacción anterior y diga si es espontánea.
- b) Calcule la presión de equilibrio del CO₂(g) a 298 K.

Compuesto	DH° _f /kJ.mol ⁻¹	DG° _f /kJ.mol ⁻¹	S°/J.K ⁻¹ .mol ⁻¹
CO ₂ (g)	-393.5	-394.5	213.6
CaCO ₃ (s)	-1207.1	-1128.8	92.88
CaO(s)	-635.5	-604.2	39.75

(2.5 puntos)

2. A partir de los datos de las reacciones siguientes,

(1)
$$HS^{-}(ac) + H^{+}(ac) \hat{U} H_{2}S(ac)$$
,

$$K_1 = 1.0 \times 10^7$$
,

(2)
$$H_2O$$
 (1) $\hat{U} H^+$ (ac) + OH^- (ac),

$$K_2 = 1.0 \times 10^{-14}$$
,

(3)
$$S^{2-}$$
 (ac) + H_2O (l) \hat{U} HS^- (ac) + OH^- (ac),

$$K_3 = 7.7 \times 10^{-2}$$
,

calcule la constante de equilibrio de

(4)
$$H_2S$$
 (ac) \hat{U} 2 H^+ (ac) + S^{2-} (ac).

(2.5 puntos)

3. Para la reacción:

$$2 BrF_5(g) \hat{U} Br_2(g) + 5 F_2(g)$$

A 1500 K se tienen las siguientes concentraciones al equilibrio:

 $[BrF_5] = 0.0064 M; [Br_2] = 0.0018 M; y [F_2] = 0.0090 M.$

- a) Calcule el valor de K_P;
- b) Si se aumenta el volumen del recipiente, ¿hacia donde se desplaza el equilibrio? <u>Justifique su respuesta</u>. **(2.5 puntos)**
- **4.** Calcule el pH de una solución 0.12 M de anilina ($C_6H_5NH_2$) ($K_b = 4.0 \times 10^{-10}$):

$$C_6H_5NH_2(ac) + H_2O(l) \hat{U} C_6H_5NH_3^+(ac) + OH^-(ac)$$

(2.5 puntos)