

conjugado correspondiente:

a) H₂O

Segundo Examen Departamental de TRANSFORMACIONES QUÍMICAS Trimestre 2008-I.

1. Considera la reacción: 2CO (g) + O_2 (g) D 2C O_2 (g), con $\Delta H = -567$ kJ/mol. ¿Cómo se podría obter mayor producción de CO_2 ? Justifica tu respuesta .
a) Bajando la temperatura y la presión. b) Elevando la temperatura y la presión.
c) Elevando la temperatura y bajando la presión. d) Bajando la temperatura y elevando presión. (1.5 puntos)
 2. Indica cuáles de las siguientes afirmaciones son falsas (F) o verdaderas (V): a) El valor de la constante de equilibrio depende de las concentraciones iniciales del sistema
$H_2(g) + I_2(g) D 2 HI(g)$
Si las concentraciones en el reactor a un tiempo dado son: $[H_2] = [I_2] = 0.250 \text{ M}$; $[HI] = 0.400 \text{ M}$, indihacia donde se desplazará la reacción. (1.5 puntos)
4. ¿Cuál de las siguientes soluciones es una solución ácida a 25 °C? a) $[H_3O^+] = 2.1 \times 10^{-9} \text{M};$ b) $[OH^-] = 2.1 \times 10^{-8} \text{M};$ c) $[OH^-] = 2.1 \times 10^{-5} \text{M}$ (1.0 punto)
5 Especifica si las signientes sustancias, son ácidos o bases de Brønsted, y escribe la fórmula de su par

6. Se prepara una solución de HF 0.035 M. Si a 25 °C, el valor de la K_a para este ácido es de 7.1 x 10^{-4, a)} Determina la concentración de ácido ionizado una vez que se alcanza el equilibrio; b) El pH de la solución; c) La concentración de iones OH-. **(2.5 puntos)**

d) CN

(2.0 puntos)

b) H₃O⁺ c) NH₄⁺