

Estructura de la Materia. Trimestre 11-P Segundo Examen Departamental.

Nombre:	Matrícula:

1. (2.0 puntos). En las siguientes especies, el átomo central es un elemento representativo. En cada caso, indique en qué grupo de la tabla periódica se ubica el átomo central.

$$\ddot{\square} = \mathbf{A} = \ddot{\square} \qquad : \ddot{\square} - \dot{\Xi} \dot{-} \ddot{\square} : \qquad \begin{bmatrix} \vdots \ddot{\square} - \ddot{\mathbf{M}} - \ddot{\square} \\ \vdots \ddot{\square} \end{bmatrix}^{-}$$
(i) (ii) (iii) (iii)

2. (2.0 puntos). Las siguientes representaciones corresponden a estructuras del SO_4^{2-} .

- a) Determine en cada una de ellas la carga formal de cada átomo.
- b) Prediga cuál de ellas es la estructura más estable. Justifique su elección
- 3. (2.0 puntos). Complete las celdas vacías para cada uno de los pares de compuestos

	Compuesto	Geometría electrónica	Geometría molecular	Compuesto con menor ángulo de enlace de cada par	¿Es polar?	Hibridación del átomo central
a)						
	Н — В— Н Н					
	: ; ; — B — ; ; : : ; ; :					
b)						
	:Ë—ÿ—Ë: 					
	: <u>F</u> — <u>ö</u> — <u>F</u> :					
c)						
	: <u>;; — ; </u>					
	н—ё—н					

4. (2.0 puntos). La configuración electrónica en orbitales moleculares del O_2^{2+} es:

$$O_2^{2+}: \left(\sigma_{1s}^2 \sigma_{1s}^{*2}\right) \left(\sigma_{2s}^2 \sigma_{2s}^{*2}\right) \left(\sigma_{2p_x}^2\right) \left(\pi_{2p_y}^2 \pi_{2p_z}^2\right)$$

- a) Escriba las configuraciones electrónicas de las especies O₂ y O₂²⁻.
- b) Determine el orden de enlace de las especies O_2 , O_2^{2+} y O_2^{2-} .
- c) Diga cuál(es) de las especies anteriores son diamagnéticas
- d) Los valores de longitud de enlace de las especies anteriores son 104 pm, 121 pm y 149 pm. Adjudique a cada especie la longitud de enlace que le corresponde

5. (2.0 puntos).

- a) Indique en el espacio correspondiente de la tabla siguiente, cuáles son las fuerzas intermoleculares presentes en cada compuesto.
- b) Con base en las fuerzas intermoleculares, elija la temperatura de ebullición que correspondería a cada compuesto a partir de las siguientes temperaturas y escríbala en el espacio correspondiente de la tabla.

Compuesto	Fuerzas intermoleculares	Temperatura de ebullición
Cl ₂		
H−C≡N		
H H H H H H H H H H H H H H H H H H H		
H H H H		

Las presiones de vapor (en Torr) de los compuestos anteriores, a 20°C, se muestran en la siguiente tabla:

Cl ₂	H−C≡N	H H H H-C-C-C-H H H H	Н Н Н Н Н Н
5150	620	6600	44

c) Indique cuáles de los compuestos son líquidos a 20°C, en un lugar en el que la presión atmosférica es de 590 torr. Justifique su respuesta.