UNIVERSIDAD AUTÓNOMA METROPOLITANA

Evaluación de Recuperación Transformaciones Químicas. Trimestre 11-0

Nombre:	Matrícula:

- 1. (1.5 puntos). Una muestra de 1.62 g de nicotina contiene 1.20 g de carbono, 0.14 g de hidrógeno y 0.28 g de nitrógeno.
 - a) ¿Cuál será su composición centesimal?
 - b) Determine su fórmula mínima.
 - c) Si la masa molecular es de 162 g/mol, determine la fórmula molecular.
- 2. (2.0 puntos). El ácido sulfúrico concentrado, es una solución que tiene una densidad de 1.84 g/mL y una concentración del 98% en masa de H₂SO₄
 - a) Calcule la concentración molar del ácido sulfúrico concentrado
 - b) Qué volumen de H₂SO₄ concentrado se requiere para preparar 250 mL de ácido sulfúrico de concentración 0.5 molar.
- 3. (1.5 puntos). El gas butano (C₄H₁₀) se comercializa para uso doméstico en cilindros de aproximadamente 15.0 litros de capacidad. En ellos, se confina el butano en estado líquido, en equilibrio con el gas, a la temperatura de 19°C y una presión de equilibrio de 2.00 atmósferas; la densidad del líquido es 0.583 kg/L. Calcule el volumen que debería tener el cilindro para contener el mismo número de moles de butano a la misma temperatura y presión si éste fuese totalmente gaseoso.
- 4. (2 puntos). Una reacción de combustión es la que se produce en una hornilla de cocina cuando se enciende el gas y puede representarse como:

$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

- a) ¿Qué cantidad de calor se obtiene al quemar 1.00 g de CH₄?
- b) ¿Qué cantidad de calor se requiere para evaporar 1.00 kg de agua cuyo calor de evaporación es 539 cal/g?
- c) ¿Cuántos gramos de metano hay que quemar para evaporar 1.00 kg de agua?

 $\Delta H_f(CH_4) = -17.89 \text{ kcal/mol};$ $\Delta H_f(CO_2) = -94.05 \text{ kcal/mol};$ $\Delta H_f(H_2O) = -57.80 \text{ kcal/mol}$

5. (1.5 puntos). Para el equilibrio de formación de fosgeno a 300°C:

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$
, , la constante $Kc = 8.16$.

- a) Calcule Kp para esta reacción.
- b) Calcule Kp para la reacción: $2 \text{ COCl}_2(g) \rightleftarrows 2 \text{ CO}(g) + 2 \text{ Cl}_2(g)$. c) Calcule Kp para la reacción: $\frac{1}{2} \text{ CO}(g) + \frac{1}{2} \text{ CO}(g) \rightleftarrows \frac{1}{2} \text{ COCl}_2(g)$.
- 6. (1.5 puntos). El bicarbonato de sodio, NaHCO₃, neutraliza la acidez estomacal, ¿qué pH tendrá una disolución que se prepara disolviendo una cucharadita (5.00 g) de bicarbonato en un vaso con 250 mL de agua a 25° C? Ka (H_2 CO₃) = 4.3×10^{-7}

Datos importantes:

Masas atómicas (en uma):

C: 12.0, H: 1.0, N: 14.0, O: 16.0, S: 32.0, Na: 23.0

 $Kp = Kc(RT)^{\Delta n}$ $Kw = Ka \cdot Kb$